We are pulling together climate related resources.

3D PRINTED ACTIVATED CARBON AEROGEL CAPACITOR MATERIAL:IMPROVING THE PERFORMANCE OF FLOW-THROUGH DEVICES

Stage: Prototype

Carbon aerogels are porous solid with interconnected carbon particles and hence, exhibit high surface area and electrical conductivity along with structural stability. Previous studies have shown that activated carbon aerogels are promising electrode materials However, the pores of bulk aerogel do not have sufficient connectivity to allow flow for applications such as for flow through batteries, catalysis and capacitive deionization (CDT)



LLNL researchers have developed a process and direct ink writing (DIW) inks for fabricating structured carbon aerogels.  This approach gives control over channel size and geometries of organic and carbon aerogels. The 3D printed Resorcinol-Formaldehyde (RF) ink structures are activated to yield high surface area carbon aerogels.


Video Link of the process

Applications and Industries

LLNL’s process for 3D printing of activated carbon aerogels could be used as a flow electrode with defined channels and geometries to improve the performance of flow-through devices. These applications include flow batteries where bulk flow needs to be orthogonal to diffusion. Other applications are catalysis, filtration/separations, capacitive deionization, capacitors, and energy conversion devices (e.g.  hydrogen evolution). LLNL’s printed graphene based activated carbon aerogels may also be applicable for these applications.

Benefits

LLNL’s fabrication process uses 3D printed structures with channels in one direction for bulk
flow. Bulk flow allows for lower flow resistance (and thus lower pumping costs) while still having high surface area and high electrical conductivity for efficient salt removal. The 3D printed parts can have a feature size as low as 100 microns.

Attachments

3D Carbon Aerogel.png

Patents